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Multi-Step / Multi-Species Finite Rate Chemical Reactions 
 

 

Introduction  
 

The design of hypersonic flight jets, rocket propulsion systems and the space shuttle main 

engine (SSME) combustion chambers require solving various combustion problems.  It in clear 

that the subject of chemical reaction plays an important role in applications of fluid flows.  In 

general, chemical reactions will occur when the temperature of a fluid is high.  The following 

figure illustrates the temperature ranges for air dissociation and ionization [1]. 

 

 

 

Figure 1.  Temperature ranges for air dissociation and ionization (for air at approximately 1 atm). 
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Thus, high temperature can cause the process in a combustion system to be very complicated.  

The unknown flow field variables are: 

 
 

  Density 

V   Velocity vector 

h(or e)  Enthalpy (or internal energy) 

Y i   (i = 1,…, NS, NS means components number) Mass fraction 

T  Temperature 

p  Pressure 

 

When simulating a combustion system, multiple characteristic time scales occur: 

 

(1) The time scale of flow field tf. It is defined by the time interval that the fluid 

particles make any small change on the properties such as velocity, 

Pressure, temperature and density 

 

(2) The time scale of chemical reaction tcj (j=1,…, NR, NR denotes the 

number of reaction step).  They are defined by the serial time integrals 

that the concentrations of components make any small change in each 

reaction step 

 

The flow field shows different characteristics with different ratio of time scales.  Based on 

Damkohler’s classic analysis [2], the Damkohler number is defined as: 

 

D
cj

f
Ij t

t
  j = 1,…, NR 

 
If the time scale of the flow field is much larger than that of the chemical reaction, that is, 
 

D 0
cj

f
Ij t

t
  j = 1,…, NR 

 

The chemical reaction takes much more time compared to the time scale of the flow field. 

Therefore, no reaction takes place.  This is called a ‘chemically frozen flow”. 
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If the time scale of flow field is much less than that of the chemical reaction, that is, 
 

D 
cj

f
Ij t

t
   j = 1,…, NR 

 
The species undergoes a chemical reaction immediately. Thus, the chemical reactants and 

products are always in an equilibrium state. This is called a “chemically equilibrium flow”. 

 
The more common, and difficult, case is when those two time scales are about same order, that 

is, 

 

D 
cj

f
Ij t

t
limited value j = 1,…, NR 

 
This is referred to as “finite rate reacting flow”.  The numerical method used in computational 

fluid dynamics faces a major difficulty when solving such finite rate reacting flows.  The difficulty 

is the stiffness of the mathematical models, which describe the transport characteristics of 

species concentrations. 

 
There are several ways to define a stiff system.  A direct definition, however, could be as 

follows: 

 
           If the ratio of the largest time scale Tcj to the smallest Tcj is very large, that is, 
 

)min(

)max(

cj

ej

t

t
 >>1   (j = 1,…, NR) 

 
for some reactions, then the mathematical description or model of these reactions is termed stiff.   

The model results in a set of stiff equations, which represent the spatial and temporal variation 

of species concentrations. 

 
To study the non-equilibrium reaction, i.e., finite rate reaction, the time required for molecular 

collisions must be taken into account.  In order to do this, it is necessary to develop models of 

chemical reactions based on the theory of chemical kinetics. From a mathematical standpoint, 

the species conservation is a set of partial differential equations describing the generation, 

elimination  and  distribution  of species.   In such a set of equations,  the generation or source  
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term should be provided by chemical kinetic models, which describe the rate of production of 

species.  The kinetic models cause the equation to become nonlinear and highly stiff, so that 

special numerical treatments will be needed to solve these species equations [3].  Otherwise, a 

very small iterative time step should be taken. However, extremely small time steps will expend 

much computational time for most numerical simulations of reacting flow. 

 
The operator splitting technique, which has been used in the simulation of reacting fluid flows 

[4,5,6,7,8], provides a tool to solve the stiff reacting flows. This technique divides the procedure 

of integration of species equations into two steps.  The first step is to get effective chemical 

production terms by integrating a set of ordinary differential equations, which describe the 

reacting rate of each species in all reaction steps.  The second step is to solve partial differential 

equations of transportation of species to get their distributions in space. This method overcomes 

the strong stiffness difficulty. The main disadvantage is that the technique will take a little more 

computing time.  Despite the  drawback, it is a good method. 

 
 
Governing Equations 
 
Basic Concepts 
 

For a given multi-component system, define i as the density of the ith species, which is the 

mass of ith gas per unit volume.  Thus, the density of the gas mixture is: 

 

 



NS

i
i

1

  

 
Where, NS denotes the total number of species. The pressure of mixture, p, is: 
 

 



NS

i
ipp

1

 

 
Where, pi is the ith component pressure.  The mass fraction of the ith species is: 
 

 Y

i

i  
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or, mole fraction 
 

 X
p

pi
i  

 
Usually, if the pressure is not too high and the temperature is not too low, it is assumed that 

most gases are ideal, obeying the following equation of state: 

 
For the ith component: 
 

 T
M

R
p

i
ii

0  

 
For the gas mixture: 
 

 T
M

R
p 0  

 
where, 
 

 Ro  universal gas constant ;
*









Kkmole

J
 

 M i   molecular weight of the ith component; 

 M  molecular weight of gas mixture; 
 T  gas temperature (K) 
 
It is helpful to define  
 

 R
i

i M

R0  

 
as the gas constant of the ith component and  
 

 R
M

R0  

 
as the gas constant of the mixture. 
 
The mass and mole fraction of gas are connected into relations as below: 
 

 X
i

ii M

M
Y  
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Where, the molecular weight of mixture is: 
 

 M 



NS

i
iiMX

1

 

or 

 M 


 
NS

i i

i

M

Y

1

1  

 
Governing Equations 
 
The governing equations in tensor form for gas flow are as follows: 
 
Continuity equation: 
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

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U
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Momentum equation: 
 

      





























































k

k

i
t

i

j

j

i
t

ji
ji

j

i

x

U

xx

U

x

U

xx
UU

xt

U 
3

2

 
Energy equation: 
 







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

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
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Where,  is viscous energy dissipation term and defined as 
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Species conservation: 
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Turbulent transport equation for kinetic energy k: 
 


(

jxt

k


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
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Turbulent transport equation for dissipation  
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Equation of state: 

p =  R T 
 
where,  is the ensemble averaged density of the mixture; Ui is the ith component of the 

velocity.  In the three dimensional space, Ui has three components, Ui = (U1, U2, U3).  Each Ui 

is the component of the vector V in the X, Y and Z direction; H is enthalpy, defined by  

 

)( 0

1

dTchYh pifi
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i
i  


 

 
Yi (k=1,…, NS) is mass fraction of the ith species; NS  is total species number; ho

fi is heat of 

formation of the ith species; cpi is specific heat of the ith species; p is pressure;  is laminar 

Viscosity; t is turbulence eddy viscosity, defined by 

 


 

2k
Ct   

 
P r  is laminar Prandtl number; Prt is turbulence Prandtl number; Sc is laminar Schmidt number; 

Sct is turbulence Schmidt number; i is species production rate. 

 
It should be mentioned that the turbulent Reynolds stress and scalar fluxes are modeled from 

the gradient transport model[9], 
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The turbulent production term is:  
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All constants in the equations above are listed in the following Tables: 
 

    Turbulence model constants 
 

 C 1     C 2    C     k        t  

1.45  1.92  0.09   1.0   1.3   0.9 
 

       Prandtl and Schmidt numbers 
 

    P r     P rt        S c     S ct  

   0.7    0.9    0.7    0.9 
 
Finite Rate Reaction 
 
Basic Concepts 
 
If there is a reaction as follows: 
 

aA + bB                 cC + dD 
 
Where, a, b, c, and d are the stoichiometric coefficients, A,B,C and D are arbitrary species and 

Kf is the forward reaction rate. The net decreasing rate of species A and B, based on the law of 

mass action, are[10] 

 

a
dt

dCA
A   kf

b
B

a
ACC  

 

B = b
dt

dCB   kf
b
B

a
ACC  

 
Also, the net increasing rate of species C and D are 
 

c
dt

dCc
C   kf

b
B

a
ACC  

d
dt

dCD
D   kf

b
B

a
ACC  

 
In the equations above, Ci (i=A,B,C,D) means the concentration of species. The forward 

reaction rate is given by the Arrhenius equation: 

k N
f AT  exp (-

TR

Ea

0

) 

kf 
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where, A, N and E a  are constants.  The term A T N is the collision factor and E a  is called the 

activation energy. The physical meaning of E a  is that only those molecules which possess an 

energy greater than E a  will react.  The values of A, N and E a  are Not obtained by theory but 

from experimental or empirical data. 
 
When given initial data of species A, B, C and D, by integrating equations earlier presented, the 
species concentrations can be calculated at any time.  If there are many reactants, numerical 
integration will be necessary. 
 
 
Finite Rate Reaction Model 
 
Generally, chemical reactions will not proceed in the forward direction only, they are reversible 

and proceed in forward and backward directions. A general multi-step chemical reaction 

equation is 

 




NS

i
ij M

1

'  
fj

bj

k

k

 


NS

i
iij M

1

"     j=1,…, NR 

 
Where, '

ij and "
ij  are the stoichiometric coefficients of reactants and products in the jth step; Mi 

the species formula; NS, the total species number; NR, the total reaction step; kfj the forward 

reaction rate for the jth step; kbj the backward reaction rate for the jth step. 

 
Based on the law of mass action, the net reaction rate of species I at the jth reaction step is  
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M
i vv
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,...,1i  NS,  j = 1,…, NR 

 
It is obvious that if the jth reaction step is at thermodynamic equilibrium, then  
 

( 0) 
dt

dC
iM                  j = 1,…,  NR 

 
This leads to  
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which means equilibrium.  The new equilibrium constant k cj  can be defined as 
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k
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The above equation represents a way to calculate the backward reaction rate k ,bj  if K cj  can be 

determined.  Defining the partial pressure  equilibrium comstant K pj  as, 

 

K pj  = 
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From thermodynamics, we have  
 

K pj = exp (-
TR

G

0

0
)                        j=1,…, NR 

 
Where 0G is defined as 
 

react
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i
iij

products

NS

i
iij vvG 




1

0'

1

0"0   

 
j = 1,…, NR 

 
Here, it should be noted that 0G  can be calculated from the Gibbs free energy of the mixture at 

the reference state )T, p o = 1 atm). The equation for Kpj shows the relation between the standard 

free energy change and the equilibrium constant at any arbitrary pressure and temperature.  

The practical importance of the equilibrium constant K pj  results from the fact that it is 

independent of total pressure and can therefore by listed as a unique function of temperature. 

 
In order to calculate K cj ,we note the mixture is at equilibrium and substitute the equation of state 

into the equation for K cj  to get, 

 

K 
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or 

K pjocj KTR ijij
)'"(' )(

                   j=1,…, NR 

 
It should be mentioned that R o  and R '

o  are universal gas constants but have different units. 

 

So far, a general computational procedure for finite rate chemical reactions in the gas phase has 

been developed. During any time of reaction, the concentrations of species can be calculated by 

integrating the equation for the net reaction rate of species, usually, by some numerical 

procedure.  To complete the calculation, the chemical kinetics model should be provided. 

 
 
Species Predictor Step 
 
In finite rate reacting flows, there are several different time scales: the flow field time scale tf and 

the reaction time scale  t cj  (j=1,…, NR).  Usually,  cjt  is less than ft  for a large number of 

reactions, such as hydrogen combustion and air dissociation.  Due to very small ,cjt , the 

reaction goes to completion at very short time interval.  This means the reaction rate of 

species i (i=1,.., NS) is larger than the effects of convection and diffusion.  It is necessary to 

integrate the equation with very small time steps of less than ft  to obtain accurate solutions.  

This causes the species transport equation to be a stiff set of equations. 

 
To explain the operator splitting procedure in more detail, the species transport equation is 

written in the following form: 

 

iii
i YDYC

t

Y 





)()(                  i = 1,…, NS 

 
Where, C(Y i ) is the convection term and D (Y i ) is the diffusion term. 

 
In predictor step, omitting the convection and diffusion terms, the equation becomes: 

 

i
i

t

Y 





                               i = 1,…, NS 
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It is integrated in a fully implicit fashion from time increment t n  tot 1n .  In this step, we get an 

effective source term 

 

ieff
i

t

Y 





)(                       i = 1,…, NS 

 
Species Corrector Step 
 
In the corrector step, the convection and diffusion terms are combined in the transport equations 

and replace source term i  by the effective one :)( eff
i

t

Y




 

 

eff
i

ii
i

t

Y
YDYC

t

Y
)()()(






 

       i= 1,…, NS 

 
Solving the equation we get the final species mass fractions Y 1n

i  at time level t 1n , 
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